
The  Principles  of  Creating  Modern  TSR  Programs 
Running under the Microsoft Windows Operating System

ZBIGNIEW A. NOWACKI 
Institute of Applied Computer Science, Lodz University of Technology

The article presents the principles of creating memory-resident applications, called TSR programs in a 
modern sense, running under the Microsoft Windows operating system. In this context, a new explanation 
of  the TSR abbreviation has been  suggested. Much attention  has been  devoted to  showing why it  is 
worthwhile to write such programs. All typical modules of a modern TSR have been discussed in detail.  
We have pointed out some differences between such residents and usual Windows applications. Author’s 
functions  and  procedures  facilitating  the  creation  of  the  former  have  been  provided.  We  have 
demonstrated that in some cases a specific program called the residents’ supervisor can be found useful. It 
has been shown that the use of a semaphore gives here a number of advantages.

Key Words: Windows application, memory-resident, TSR, operating system, multitasking, semaphore

1. Introduction

Let us recall that in DOS [1], the first operating system for IBM PC-compatible computers, 
merely one program was running at any given time under normal circumstances. If, however, 
a program ended its work with the software interrupt INT 27H (called ‘Terminate But Stay 
Resident’) or INT 21H/31H [2, 3], the system kept the whole or a portion of program’s code 
in the memory. This created a substitute for multitasking [4], because the control could be 
transferred back to the pieces  of code in the case of occurrence of some events,  such as 
pressing a certain key on the keyboard. Utilities accomplishing this approach were termed 
TSR (‘Terminate and Stay Resident’) or memory-resident (shortly resident) programs [5, 6]. 
They could be treated as a part of the operating system, and even DOS itself, especially in 
versions 5.0 and later, applied this technique to perform a number of useful functions.

Recently,  with DOS no longer required to use Microsoft Windows [7], the majority of PC 
users have abandoned the former in favor of the latter. However, problems being solved by 
the DOS applications of the TSR type have remained and even intensified in the age of the 
Internet. Although writing such programs in the true multitasking environment of Windows is 
easier (no special programming tricks are needed), not every developer knows how to do it. 
Let us note that the problem cannot be reduced to hiding the main window (we assume that 
the word ‘resident’ means just ‘running in background’, which seems to be most consistent 
with  the  general  judgment  [8]).  Our  application  still  has  to  test  externally  or  internally 
generated  events  and  react  to  them  appropriately,  i.e.,  behave  like  a  component  of  the 
operating system.

This  article  has been intended to conduct,  among others,  a  comparative  analysis  between 
those traditional TSR programs, and utilities running under Microsoft Windows (albeit not in 
its DOS box) and normally not revealing their presence to users, but playing the role of a just-
in-time tool whenever a specific event occurs in the system or the world around. Of course, 
our  discussion  focuses  on applications  of  the  latter  type,  so the reader  may benefit  from 
reading this article even if they have never programmed under DOS. We suggest to call the 
utilities Windows TSR or modern TSR (also embracing applications in other multitasking 
systems) or briefly TSR programs. Obviously,  they have to reside in memory,  so the last 



member  of  the  word-by-word  reconstruction  of  the  acronym  is  justified.  But  they  never 
terminate work (unless they cease to reside), so the first part must be somehow altered or 
eliminated.  The  paper  clarifies,  inter  alia,   how  this  can  be  done.  In  this  manner  TSR 
programs, so near and dear to the hearts of many people (including the author), will be able to 
start their life after life.

Obviously, it would have been better if the paper had been written in the second half of the 
nineties. It is hard to say why this was not done (the author simply did not have the time). But, 
of  course,  applications  using  mechanisms  discussed  here  (hot  keys,  timers,  synthesizing 
events, etc.) were still  being created,  at least  by some developers, without hindrance.  The 
main contribution of the author is the distinction of a class of programs that are specialized in 
this matter. 

The set of such utilities contains,  in particular,  Unix daemons.  In fact,  they also set  up a 
mechanism for being called up either periodically or by an application at a later time, and 
otherwise remain idle in the background until  explicitly stopped. However,  we would not 
want to call programs depicted in detail here ‘Windows daemons’ because a common practice 
is exactly the opposite. For instance, in [8] you can find the phrase ‘our daemon (TSR in 
Linux)’. Comparisons of this type are very popular, but they are inaccurate, for the daemon 
function does not cause the termination of the program as the DOS interrupt did. And only 
after publishing this text they will be fully justified.

This work can also be regarded as a kind of an implementation report [9]. Our target audience 
contains, in particular, the group of people that do not like to perform tedious repetitive tasks.  
It is our hope that the paper will be understandable even to developers not building Windows 
applications yet. The most effective language to create historical memory-resident programs 
was Assembler, while it is most practical to write modern TSR utilities in the native language 
of Windows, i.e., C. Therefore, our procedures and examples have been expressed in it (or in 
C++). Some rules formulated in the article (involving, for instance,  an introduction to the 
basics of the Windows API approach to programming)   are known, but striving for self-
sufficiency and clarity we have decided to keep them. (They are also needed to define the 
class of modern TSR programs.) On the other hand, we offer a number of  functions that 
cannot be found in MSDN [10].

2. The usefulness of modern TSR programs in Microsoft Windows

Do you  remember  the  TSR  program  running  in  DOS  which  pursued  a  screenshot  after 
pressing Alt and W at the same time? (Anyway, you do not even have to, because currently 
another popular utility - being just TSR in our modern sense - does the same in response to 
Ctrl-Shift-R.) This is the example of a hot key denoted usually by  Alt-W  or  Alt+W. Using 
methods described in the article you will be able to write your own program of this type,  
which runs under Windows and satisfies special requirements.

Everything, in principle, that is normally typed on the keyboard or clicked with the mouse can 
be automatically entered or performed by a TSR after pressing a hot key. This accelerates and 
simplifies  work  enabling  us  to  eliminate  mistakes.  Of  course,  the  larger  the  sequence  of 
synthesized keys or mouse events, the more profitable the resident use. It should be also made 
clear that the mechanism can be applied solely to highly repeatable processes.

Another  important  functionality  domain  of  TSRs  embraces  loading  and  starting,  also  in 
response to pressing a hot key, common software applications. This method displays evidence 
of the following advantages, compared to start-up icons on the desktop or in the taskbar: no 
place on the screen is needed and the resident can provide command-line arguments.



It should be pointed out that in choosing to apply a TSR program we replace the multiple use 
of tedious  routine operations  by a single performance of a more intellectual  process,  i.e., 
programming. Someone for whom such an exchange is not important should not take to write 
TSRs.

Computer  game  players  sometimes  buy  special  (rather  expensive)  keyboards  with  extra 
programmable  keys  being  able  to  replace  sequences  of  moves.  Using a  TSR is  likely  to 
achieve the same purpose at much lesser cost. Furthermore, the action of a hot key can depend 
on the current game state.

Let us note that our TSR utility does not need to confine itself to testing keyboard-related 
events. For example, it can examine the values of some pixels on the screen and, depending 
on the outcome, automatically take the appropriate action.

It is worth paying attention to some side (albeit very positive) effects connected with TSR 
programs. They concern security on the Internet. For instance, protection against the man-in-
the-browser and phishing attacks [11, 12] may be easier, because applying a hot key you do 
not need to type the address of the bank website into the browser window (thus, no virus will 
be able to read it), and you do not need to click on suspicious links.

3. The main section of a TSR

A typical TSR program consists of the following components: 

 Creating and hiding the main window.
 Registering hot keys.
 The loop testing events. 
 Procedures responding to hot keys.
 Procedures invoked periodically by timers.

The  first  three  elements  are  contained,  as  a  rule,  in  the  main  function  starting  from the 
following header: 

int WINAPI WinMain(HINSTANCE task, HINSTANCE, LPSTR, int )

The use of  WinMain [13,  14]  instead  of  main  means  that  we deal  here  with  a  so-called 
Windows application [15-17] requiring the inclusion of the windows.h file defining, inter alia, 
types of the above parameters. In the TSR program we only need the task handle being used 
in, e.g., the following procedure creating the window [18, 14]: 

WNDCLASS WindowClass;
memset(&WindowClass,0,sizeof(WindowClass));
WindowClass.hInstance = task;
WindowClass.lpszClassName = “class_name”              // arbitrary name
WindowClass.lpfnWndProc = WindowProc;         // user function declared earlier
if(!RegisterClass(&WindowClass)) return 1;
HWND window;
window = CreateWindowEx(WS_EX_TOOLWINDOW|WS_EX_TOPMOST,
“class_name”, “TSR_name”, WS_OVERLAPPED,
0, 0, 300, 21, NULL, NULL, task, NULL);
ShowWindow(window, SW_HIDE);

The arguments of CreateWindowEx [19] are, in principle, insignificant (except the task handle 
and class name), because the window is being hidden [20] at once and usually there is no need 
to display it later.



At the end of the main function one should put the loop testing events (manifested in coming 
messages), that is: 

MSG event;
while(GetMessage(&event, NULL, 0, 0))
{
DispatchMessage(&event);
}
return 0;

In contrast to a normal loop, this sequence of instructions does not overburden the system 
even if it is being performed for a long time and by many programs simultaneously.

Let us note that the message loop in TSRs differs slightly from the analogous one in regular 
Windows applications. For in the latter [14, 21] the call of DispatchMessage [22] is preceded 
by that of TranslateMessage [23] responsible for providing ASCII codes of characters entered 
from the keyboard. But typical memory-resident programs do not allocate the entry of this 
device,  since  this  is  not  needed  for  handling  hot  keys.  Hence  TranslateMessage can  be 
omitted here.

In the context of problems discussed in this article, the last procedure is a counterpart of DOS 
interrupts INT 27H and INT 21H/31H. However, those mechanisms had to finish the program 
execution, while an application implementing the above loop is treated as a still existing task. 
A common feature of all the three cases is that programs reside in the memory and test real-
world events or events generated by the system. Taking the facts into account we propose to 
call the counterparts of DOS memory-resident programs running in Windows (and in other 
multitasking environments, e.g., Linux with its system daemons) ‘Test and Stay Resident’. 
Thus, the TSR abbreviation will be able to remain unchanged.

4. The registration of hot keys

Knowing  the  TSR  window  handle  (returned  by  CreateWindowEx)  we  can  proceed  to 
submitting the keys whose pressing will wake the resident up. This is done using the call [24]

RegisterHotKey(window, id, modifiers, key);

where id is a unique identifier of the hot key (from 0 to 0xBFFF). The key parameter speci-
fies a basic key designated to be pressed; it must be its so-called virtual code being used in 
Windows. For the letter or number keys it is simply an ASCII code; e.g. ‘A’ (but not ‘a’) or 
‘9’. In other cases, you may use a constant (e.g. VK_F10) defined in the winuser.h header file 
included automatically by windows.h or apply the call [25]

MapVirtualKeyEx(scan,3,0)

returning the virtual code that corresponds to a scan code given in the scan parameter. Finally, 
the  modifiers argument (if different from zero) specifies modifiers that must be pressed in 
combination with  key. In order to list them, it is possible to use the constants  MOD_ALT,  
MOD_CONTROL, MOD_SHIFT and MOD_WIN connected (if more than one) by the bitwise 
inclusive OR operator. If the registration fails (because the same hot key has already been 
registered by another program or it is being used by the operating system), the return value is 
zero. Let us add that the statement [26]

UnregisterHotKey(window,id);

cancels the hot key with the id identifier. 



5. Handling of hot keys

When discussing the procedure for creating a window we mentioned an application-defined 
function called WindowProc (the name is, of course, arbitrary). It should be declared at using 
the header

LRESULT CALLBACK WindowProc(HWND, UINT, WPARAM, LPARAM);

The function will be invoked whenever an event specified by an integer (termed Windows 
message) in the second argument, related to the created window, occurs in the system. In the 
case of TSR programs it is only essential to handle WM_HOTKEY (a constant defined in the 
header  file)  generated  [27]  by pressing  a  hot  key whose  identifier  is  passed in  the  third 
parameter. Hence, a typical window procedure will be: 

LRESULT CALLBACK WindowProc(HWND window, UINT WindowsMessage, 
     WPARAM wParam, LPARAM lParam)
{if(WindowsMessage==WM_HOTKEY)
     {
     // releasing modifiers
     keybd_event( VK_MENU,0,KEYEVENTF_KEYUP,0);
     keybd_event( VK_SHIFT,0,KEYEVENTF_KEYUP,0);
     keybd_event( VK_CONTROL,0,KEYEVENTF_KEYUP,0);
     keybd_event( VK_LWIN,0,KEYEVENTF_KEYUP,0);
     keybd_event( VK_RWIN,0,KEYEVENTF_KEYUP,0);
     switch(wParam)
             {
             case id:                                  // response to the hot key with identifier id
             …
             }
      return 0;                                       // return after break in a case label
      }
return DefWindowProc(window, WindowsMessage,
     wParam, lParam);                        // return for unprocessed messages
}



Let us add that using the MSG structure [28, 29] hot keys can be handled even without the 
window procedure.  For  this  purpose,  yet  another  version  of  the  message  loop should  be 
applied: 

MSG event = {0};
while(GetMessage(&event, NULL, 0, 0))
{
if(event.message == WM_HOTKEY)
     {
     // releasing modifiers (as above)
     …
     switch(event.wParam)
             {
             case id:                                  // response to the hot key with identifier id
             …
             }
     }
DispatchMessage(&event);
}
return 0;

In this case, no window should be created, and even the TSR could be a console application.  
This approach has been used in the example of [24]. However, it is not recommended by the 
author, especially in more advanced applications.

6. Synthesizing events on the keyboard 

In order to synthesize pressing the key with a virtual code key the following can be used

keybd_event(key,0,0,0);

Somewhere further the simulation of its releasing 

keybd_event(key,0,KEYEVENTF_KEYUP,0);

should occur [30]. If the TSR program uses these options after pressing a hot key, releasing 
modifiers  (cf.  the  previous  section)  may be necessary,  since otherwise  keys  belonging to 
actually  introduced combinations  can  affect  the outcome of  the simulation.  However,  the 
reader ought to be warned not to apply the SetKeyboardState function [31] for this purpose, 
because it influences only the current process, that is, the resident. It is also possible to use 
additional instructions such as 

if(GetKeyState(VK_CAPITAL) & 1)                                // if CAPS is active
      {
      keybd_event( VK_CAPITAL,0,0,0);
      keybd_event( VK_CAPITAL,0,KEYEVENTF_KEYUP,0);
      }

Moreover, the GetKeyState function [32] can be used to verify if the key with a virtual code 
key is pressed, in which case the expression 

GetKeyState(key) < 0

returns  1.  This  allows  us  to  make  the  operation  of  hot  keys  dependent  on  the  status  of 
additional modifiers such as Insert.

It is worth mentioning that synthesized keyboard events participate in the activation of hot 
keys on a par with actual events. If it is negative (e.g., we would like the F10 key with active 



Scroll Lock  to be modified, but otherwise unchanged), apply UnregisterHotKey. On the other 
hand, it is possible to synthesize the hot keys of other programs or of the operating system.

7. Synthesizing mouse events 

To synthesize mouse motion and button clicking you may use the mouse_event function [33]. 
In most cases clicking the left button is sufficient. For this purpose, it is advisable to include 
in the resident source code the following function (it is not in MSDN): 

void ClickLeft  (int x, int y)                              // click the left button at (x,y)
{
SetCursorPos(x, y);                                       // set the cursor at (x,y)
mouse_event(MOUSEEVENTF_ABSOLUTE | MOUSEEVENTF_LEFTDOWN,
             x,y,0,NULL);
mouse_event(MOUSEEVENTF_ABSOLUTE | MOUSEEVENTF_LEFTUP,
            x,y,0,NULL);
}

Double-clicking can be obtained by calling  ClickLeft   twice (maybe separated by a certain 
time  interval).  If  necessary,  the  ClickRight function  might  be  implemented  via  replacing 
LEFT by RIGHT. 

8. Optimized synthesizing of events 

Windows also has the  SendInput function [34] being able to synthesize input from both the 
keyboard and the mouse.  However,  writing its  parameters is  a bit  more complicated.  For 
instance, the implementation of ClickLeft  using SendInput would look as follows: 

void ClickLeft  (int x, int y)                                
{
INPUT a[2];
a[0].type=INPUT_MOUSE;
a[0].mi.dx=x;
a[0].mi.dy=y;
a[0].mi.dwFlags=
                     MOUSEEVENTF_ABSOLUTE|MOUSEEVENTF_LEFTDOWN ;
a[1].type=INPUT_MOUSE;
a[1].mi.dx=x;
a[1].mi.dy=y;
a[1].mi.dwFlags=MOUSEEVENTF_ABSOLUTE|MOUSEEVENTF_LEFTUP ;
SetCursorPos(x,y);
SendInput(2,&a[0],sizeof(INPUT));
}

In the case of the keyboard, to apply SendInput sensibly we should create an array for each 
sequence of synthesized keystrokes. To this end you might use a very convenient function 
defined (it is not in MSDN) by



#include <stdarg.h>
#include <stdlib.h>
int SendKeys(int number, ... )
{
int sum = 0, i, key;
va_list marker;
if(!number)
   {
   va_start(marker,number);
   while (va_arg(marker, int)) number++;
   va_end(marker);
   }
va_start(marker,number);
#if defined(INPUT_KEYBOARD) && \
   (!defined(__WATCOMC__) || __WATCOMC__>1290)   // for some compilers
INPUT *array = new INPUT[number];
for(i=0; i<number; i++)
   {
   key = va_arg(marker, int);
   sum += key;
   array[i].type=INPUT_KEYBOARD;
   array[i].ki.wVk = abs(key);
   array[i].ki.dwFlags = key<0 ? KEYEVENTF_KEYUP : 0;
   }
SendInput(number, &array[0], sizeof(INPUT));
delete [ ] array;
#else
for(i=0; i<number; i++)
   {
   key = va_arg(marker, int);
   sum += key;
   keybd_event(abs(key), 0, key<0 ? KEYEVENTF_KEYUP : 0, 0);
   }
#endif
va_end(marker);
return sum;
}

The first parameter of SendKeys specifies the number of virtual codes passed in succeeding 
arguments. It may equal zero, which indicates that the same value will occur at the end of the 
variable parameter list. Note that the releasing of a key is indicated by the arithmetic negation 
of its code. For example, the very concise and readable call

SendKeys(4, VK_CONTROL, ‘W’,  -‘W’, -VK_CONTROL)

or, equivalently, 

SendKeys(0, VK_CONTROL, ‘W’,  -‘W’, -VK_CONTROL, 0 )

synthesizes  Ctrl-W.  The function returns the sum of its variable arguments enabling us to 
check easily in more complicated cases if all pressed keys have been released (i.e., zero has 
been returned).

However, the reader should be warned that some high-performance compilers do not contain 
SendInput (but SendKeys should work). Thus we do not recommend an unconditional use of 
SendInput instead of keybd_event and mouse_event although MSDN says that the latter have 
been superseded by the former. The author uses the ...event functions with  no problems.



9. Installing TSR programs

A TSR can be started with any method known under Windows.  In particular,  it  may be 
located  in  the  Startup folder.  This  option   is  good  if  the  resident  is  to  be  treated  as  a 
component of the operating system. Such a TSR is able not to reveal its presence and can 
remain  unnoticed  by the user  unless  during the  session its  hot  keys  are  pressed or  other 
respective events happen.

The reader may be concerned that a user could start their TSR under another account and 
intercept their keystrokes. This will be impossible unless the utility is located in the subfolder 
Startup of the All Users folder. 

A TSR can  be  sometimes  installed  as  a  Windows  Service  [35-37].  Such  a  solution  is  a 
preferred technique to build the equivalent of a UNIX daemon, but the class of modern TSR 
programs  is  essentially  broader  than  the  class  of  Windows  Services.  This  is  so  because, 
according to [35], “These services … do not show any user interface.” Precisely speaking, a 
utility of this type runs in a windows station distinct from the interactive station of the logged-
on user. This implies that a Windows Service cannot register hot keys and display anything 
(hence it may be a console application). Even error messages should not be raised in the user 
interface, since dialog boxes will not be visible and can cause the program to stop responding.

In [38, 39] there is available a typical modern TSR that is able to be set up as a Windows  
Service. The description of the program explains how to accomplish this goal.

10. Starting software applications by TSR programs

In multitasking systems residents may start  software applications relieving, in the case of 
Windows, the desktop and taskbar. A number of programs accept command-line arguments 
which can be easily passed on to them using the functions of the  spawn family [40]. For 
example, the connection to a Web site is accomplished via [41, 42]

// at the beginning of the program:
char ie[MAX_PATH+1];
// in the main section:
GetSystemDirectory(ie,MAX_PATH+1);                           // get the system disk
strcpy(ie+2,”\\program files\\internet explorer\\iexplore.exe”);

GetShortPathNameA(ie,ie,MAX_PATH+1);   //  replace long name by  
short one

// for a hot key:
spawnl (P_NOWAIT,ie,ie,”http://www.nova.pc.pl”,NULL); // connect to network

This method (it is not presented in [10]) enables you to get a very fast access to large numbers 
of Web pages. 

11. The removal of the resident

Erasing  a  TSR program running  under  DOS was  feasible  albeit  realized  via  a  relatively 
cumbersome procedure, and sometimes it  required a prior removal of other residents. For 
Windows the matter is quite simple, since it is sufficient to invoke [43] 

PostQuitMessage(0);

(Do  not  use  the  exit function  [44]  unless  you  want  the  system  to  start  behaving  in  an 
undefined fashion.)  Thus,  you may book a  hot  key to  perform the operation  of  deleting. 

http://www.nova.pc.pl/
file:////program%20files//internet%20explorer//iexplore.exe


Furthermore, since the TSR is shown up as a process in the Windows Task Manager, it can be, 
if necessary, terminated in a brutal manner.

The question arises whether and when erasing our TSR utility before shutting down the whole 
system is useful. In the case of DOS the answer was determined by the all-powerful need to  
save memory (limited, in principle, to 640 kB even if the actual physical memory was much 
greater). In Windows this solution can be convenient if the resident executable file has been 
located in the Startup folder. It needs to be remembered that when the application is running, 
its exe file cannot be opened, whence also deleted or replaced by another. Otherwise, it may 
be an unpleasant surprise when after compiling a new version of the resident the user is not 
able to move it to the Startup folder. 

We  emphasize  once  more  that  modern  TSR programs  differ  from an  average  Windows 
application in only two respects: they hide their window (they stay resident), and their main 
task is to listen and respond to some events even when they are not in focus (they test).  The 
fact that TSRs do not terminate until explicitly requested to do so is obviously irrelevant - 
most applications continue running until the user requests termination.

12. Output messages of TSR programs 

Although our resident application generally keeps silent, revealing its existence only by its 
influence on other programs or by starting them, there are two situations in which output 
messages are useful. Firstly, if you have a lot of hot keys, it is recommended to create an 
online help pertinent to their action, preferably with one more, easy-to-remember (e.g. ‘?’ or 
F1 with  modifiers),  key.  It  is  convenient  to  display this  information  using  the  following 
scheme [45]: 

MessageBox(NULL,”The help content (it may contain newline characters)”,
“The window title (e.g. the program name)”,

       MB_OK|MB_TOPMOST|MB_SETFOREGROUND);

A demonstration [9] of such a help is shown in Figure 1.



Fig. 1. An example of the hot keys’ help

The second case is, e.g., the testing phase of the program, when it might be helpful to get 
information about the current values of variables. The easiest way would be to use the printf 
function [46] or the cout or cerr streams [47], but unfortunately these facilities do not work in 
Windows applications. Luckily, we can write ... an own function printf, whereby this is done 
in a surprisingly simple way. Namely, it suffices to include the following subroutine [48] in 
the application source code, somewhere at its beginning:



# define  MAXP            256  // maximal output message length, may be changed
#include <stdarg.h>
void printf(char *format,...)
{char string[MAXP];
va_list argptr;
va_start(argptr, format);
vsprintf(string, format, argptr);                     // always possible but a bit unsafe
_vsnprintf(string, MAXP, format, argptr);    // use instead if _vsnprintf is available
vsnprintf(string, MAXP, format, argptr);      // use instead if vsnprintf is available
va_end(argptr);
MessageBox(NULL, string, “Program”,           // write down, e.g., the TSR name
MB_OK|MB_TOPMOST|MB_SETFOREGROUND);}

The  only  difference  between  the  implementation  of  printf and  standard  one  is  that  after 
displaying a message our version will be waiting for the user to press Enter (or Esc) or click 
OK. 

Furthermore, if your compiler has vsnprintf accepting NULL for the first parameter [49], you 
may write a still more convenient function outputting messages: 

#include <stdarg.h>
void printf(char *format,...)
{va_list argptr;
va_start(argptr, format);
int len = vsnprintf(NULL, 0, format, argptr)+1;
va_end(argptr);
char *string = new char[len];
va_start(argptr, format);
vsnprintf(string, len, format, argptr);          
va_end(argptr);
MessageBox(NULL, string, “Program”,           // insert, e.g., the TSR name
MB_OK|MB_TOPMOST|MB_SETFOREGROUND);
delete [ ] string;}

This  version  avoids  not  only  potential  buffer  overflows  but  also  the  need  to  adjust  the 
compile-time constant MAXP when the length of a text to be displayed increases.

13. Timers  

Some tasks of TSRs cannot be resolved with the mechanism of hot keys, but they require 
rather a periodic testing of certain conditions and undertaking an action only when they are 
satisfied.  To  this  end,  when  working  under  DOS,  we  were  capturing  the  interrupt  08H 
hardware-generated  every  55  ms.  Under  Windows,  we  can  define  a  number  of  similar 
‘interrupts’ known as timers by the call [50]

SetTimer(window, id, time, ResidentProc);

where id is a nonzero timer identifier, and ResidentProc is the name of an application-defined 
function (with the same header  as that  of the window procedure)  that  will  be every  time 
milliseconds invoked with the parameters  window,  WM_TIMER,  id and the current system 
time. One of the  window and  ResidentProc arguments can equal  NULL, which in the latter 
case  implies  that  the  window  procedure  will  be  called.  The  timer  may  be  at  any  time 
destroyed with the use of the statement [51]

KillTimer(window, id);

with parameters equal to the first two ones used during creating it (but this option requires 
window to be nonzero).



14. Testing pixels

Suppose we wish to connect to a Web site, and we have prepared a set of keys and buttons  
that we want to synthesize using our TSR program. It is obvious that we cannot do that at any 
time, but we have to recognize in a way that the selected page is already loaded. In this and 
other cases, the TSR should be able to read the RGB components of pixels currently displayed 
on the screen. This can be done using the  GetPixel and other functions [52-55], as shown 
below: 

{

      POINT pt;                                                     // for cursor position

HDC screen = CreateDC(“DISPLAY”, NULL, NULL, NULL);
GetCursorPos(&pt);
COLORREF col = GetPixel(screen, pt.x, pt.y);
DeleteDC(screen);
printf(“x = %d, y = %d, red = %d, green = %d, blue = %d”,    // own printf

pt.x , pt.y, col&255, (col>>8)&255, (col>>16)&255);
break;
}

This procedure displays the coordinates and the RGB components of the pixel located at the 
cursor position (see Fig. 2). It is worth to implement it as a response to pressing a hot key,  
because that way, e.g., you will be able to acquire easily any nice color visible on the screen 
to your program or page. A utility pursuing this goal can be found in [9].

Fig. 2. Displaying RGB components in  response to pressing a hot key

15. The suspension of the resident action

If  after  starting  the  browser  program your  TSR tests  in  an  ordinary  loop  whether  RGB 
components of some pixels have attained values characteristic for the desired page, the system 
processor  may  be  overburdened.  One  sees  that  it  suffices  to  perform  only  one  such 
verification within a given time interval.  We should, therefore,  have a mechanism to stop 
program execution for a given time period. In C/C++ under DOS we had the delay and sleep 
functions [49],  but  they cannot be used in Windows applications.  Instead,  there is  a new 
function Sleep [56] whose single argument specifies for how many milliseconds the program 
is to be suspended. For instance, the following procedure 

HDC screen = CreateDC(“DISPLAY”,NULL,NULL,NULL);
do Sleep(100);
while(RGB(192,192,192 )!= GetPixel(screen,8,13));
DeleteDC(screen);



tests every 100 milliseconds (this timeout value can be recommended for most applications) 
whether the pixel with the screen coordinates (8,13) has all the RGB components equal to 
192.

16. The residents’ supervisor 

A similar sequence of instructions may be used, for example, in order to wait for the desired 
Web page. This method, however, has a major flaw: exceptional circumstances (e.g., a server 
crash)  can  cause  our  program  to  perform  a  practically  infinite  loop.  (It  will  be  easily 
recognized that the resident is in this state, because it will not react to other hot keys, e.g., it 
will not display the help.) Introducing a maximal waiting time is not a perfect solution; the 
case may be that the time period is too long or too short. One would like to be able to stop the  
execution of  this  loop upon request  at  any time and,  surprisingly,  there is  such a  simple 
possibility.  However,  instead  of  the  Sleep  function  you  should  apply  (at  least  in  more 
extensive implementations) semaphores or another method of interprocess communication.

Let us recall that in Microsoft Windows parallel programming has been implemented in the 
form of so-called multithreading [57]. A detailed discussion of concurrent processes can be 
found in [58, 59], whereas here we confine ourselves to the description of the minimum set of  
required instructions. First of all, somewhere at the beginning of the TSR program you should 
put the semaphore handle declaration and definition of the SLEEP macro (it is not in MSDN): 

HANDLE sema;
#define SLEEP(time) \
  {if(WaitForSingleObject(sema,time) != WAIT_TIMEOUT) return 0;}

Further, in the main section sema should be initialized by [60] 

sema = CreateSemaphore(NULL,0,1, semaphore_name);

where semaphore_name is an arbitrarily chosen nonempty character string. You may now use 
the statement of the form of  SLEEP(time) that normally will work exactly like  Sleep(time), 
although the suspension of the TSR action will be accomplished by the  WaitForSingleObject 
function [61]. If all  of the delays needed for handling  WM_HOTKEY are realized via the 
SLEEP macro, in another program, called the residents’ supervisor, you can perform the same 
(including  semaphore_name)  semaphore  creation  and  register  a  hot  (‘emergency’)  key 
executing the following procedure [62]: 

ReleaseSemaphore(sema,1,NULL);
// two next statements are  essential only in case of false alarm, i.e. pressing
// the emergency key without any pending state
Sleep(100);                                                      // parameter  may be changed
WaitForSingleObject(sema,0);  



Then pressing it causes to abandon the performing of the window function containing SLEEP. 
Let us note that the use of the residents’ supervisor as a separate process is necessary here; the 
emergency key cannot be registered in the same single-threaded TSR program whose pending 
state we want to stop.

One might wonder whether in the definition of SLEEP we could replace return 0 by break. To 
answer, it should be noted that after finishing the loop we usually synthesize some mouse and 
keyboard events. If the loop is interrupted by pressing the emergency key, these events occur 
in the wrong context, e.g., some random programs having an icon on the desktop are started. 
Thus, in general return 0 is better.

The situation becomes complicated somewhat whenever such delays are needed in functions 
being invoked from the window procedure. In this case you may use the LongSleep function 
defined (it is not in MSDN), together with ancillary things, by 

#include <setjmp.h>
jmp_buf jumper;                                                         // arbitrary  name
void LongSleep(DWORD time)
  {if(WaitForSingleObject(sema,time) == WAIT_OBJECT_0) longjmp(jumper,1);}

It requires also the following statement 

If(setjmp(jumper)) 
  return 0;                                        // the emergency action, may be changed

being  performed  somewhere  at  the  beginning  (before  the  first  use  of  LongSleep)  of  the 
window procedure. Then it is no longer needed to use SLEEP, because LongSleep will be able 
to replace it everywhere. (As a result,  a macro is superseded here by a function, which is 
generally recommended.) We see that if the emergency key is pressed, LongSleep performs a 
nonlocal goto to finish the window procedure.

Note that LongSleep can be called with the INFINITE parameter. For instance, the following 
sequence of instructions 

if(setjmp(jumper)) goto label;
LongSleep(INFINITE);
label:



suspends the program execution until the moment when the emergency key is pressed.

Let us add that this method can be equally well applied to stop, on request, the pending state 
of  normal  programs,  even  console  applications  including  windows.h. It  only  requires 
specifying the alternative action (e.g., the call of  PostQuitMessage  or exit). Of course, the 
supervisor registering the emergency key still has to be TSR.

Developing his modern TSR application, the author recognized at one point that it would be 
better to have three different programs (for the screen, clipboard, and the Internet). Later he 
added the residents’ supervisor with one universal emergency key, and in the other programs 
he simply replaced Sleep by SLEEP. Afterwards, he substituted LongSleep for SLEEP. It was 
easy and pleasant. On the other hand, a modification of the loop testing events or the use of 
the PeekMessage function [63] do not live up to our expectations in this area, although such 
solutions would be able to keep our TSR utility single-threaded. However, they would require 
significant changes in the source code creating an opportunity to make mistakes. For example, 
you could write 

cancel = false;
do {
     Sleep(100);
     recursing = true;
     while (PeekMessage(&event, NULL, 0, 0, PM_REMOVE))
              {
              DispatchMessage(&event);
              }
     recursing = false;
     if(cancel) …             // an emergency action (e.g., return 0, break, etc.)
} while (RGB(…) != GetPixel(…));

where recursing is tested in WindowProc to ignore the hotkey if its handler has already been 
active, and cancel is set by the window procedure when the emergency key is pressed. This 
piece of code seems to be too extensive, and a possible macro would be rather too elaborate. 
Finally,  last  but  not  least,  the  methods  of  this  type  would  necessitate  the  use  of  several 
emergency keys, one for each TSR program. 

17. Conclusion 

In  the  paper  we  define  and  study  a  class  of  memory-resident  applications,  called 
contemporary TSR programs,  working under  the Microsoft  Windows operating system. A 
comparative  analysis  between  them  and  historical  residents  running  in  DOS  has  been 
conducted. In the latter case, the TSR acronym was being deciphered as ‘Terminate and Stay 
Resident’. Adapting the concept to the philosophy of Windows, we have proposed to explain 
TSR as ‘Test and Stay Resident’. This expansion of the initialism [64] points out the fact that  
in a multitasking environment (including that of Linux) the utilities do not terminate work 
before ‘staying resident’; they test events in the system and surrounding world and perform a 
suitable action. Thus, a TSR behaves like an element of the operating system. Let us add that  
recursive versions ‘TSR Starts and Resides’ or ‘TSR Stays Resident’ might be also accepted, 
especially in the hacker community [65].

This  article  has  been conceived  as  a  self-contained guide  [cf.  9]  to  write  such memory-
resident  programs by those who know the C/C++ language [66-68] even if  they have no 
experience in building so-called Windows applications. Much attention has been devoted to 
showing why it is worthwhile to write modern TSRs.  Their all modules, i.e., creating and 
hiding  the  main  window,  registering  hot  keys,  the  loop  testing  events,  procedures  being 
executed in response to hot keys, and timer routines have been discussed in detail. We have 
pointed  out  the  differences  between  the  TSRs  and  usual  Windows applications.  Author’s 
functions and procedures facilitating the creation of the former have been given. We have 



obtained the most advanced result stating that in some circumstances the usage of a specific 
program called the residents’ supervisor can be necessary. It has been demonstrated that its  
design is able to be greatly simplified by the use of semaphores.

References

1.   Murdock EE. DOS the Easy Way. Downloadable E-books: 2007.

2.   Ralf Brown’s Interrupt List.
http://www.ctyme.com/rbrown.htm [27 July 2013].

3.   Scanlon JL. 8086/8088/80286 Assembly Language. Brady Books: 1988.

4.   Stallings W. Operating Systems: Internals and Design Principles. Prentice Hall: New 
Jersey, 2009.

5.   Hyde R. Art of Assembly Language. Second Edition. No Starch: San Francisco, 2010.

6.   Tomczyk M. The Methods of Creating Resident Programs in the DOS and Windows
Systems, Master’s thesis supervised by Z. A. Nowacki. Lodz University of Technology: 2001.

7.   Kominiak L. The Genesis, Evolution and Structure of Microsoft Windows Operating 
Systems. Master’s thesis supervised by Z. A. Nowacki. Lodz University of Technology: 2007.

8.   Writing resident programs under Linux.
http://rudy.mif.pg.gda.pl/~bogdro/linux/tsr_tut_linux_en.html [27 July 2013].

9.   Modern TSR programs by Zbigniew Andrzej Nowacki.
http://www.nova.pc.pl/software.htm [27 July 2013].

10. MSDN Library.
http://msdn.microsoft.com/en-us/library/default.aspx [27 July 2013].

11. Lance J, Stewart J. Phishing Exposed. Syngress Publishing: 2005.

12. Zimoch M. Privacy and Security on the Internet. Master’s thesis supervised by 
Z. A.  Nowacki. Lodz University of Technology: 2009.

13. WinMain Entry Point.
http://msdn.microsoft.com/en-us/library/ms633559(v=vs.85).aspx [27 July 2013].

14. WinMain - application entry point.
http://www.toymaker.info/Games/html/winmain.html [27 July 2013].

15. Petzold C. Programming Windows. Microsoft Press: 1998.

16. Richter J. Programming Applications for Microsoft Window. Microsoft Press: 1999.

17. Prosise J. Programming Windows with MFC. Microsoft Press: 1999.

http://www.toymaker.info/Games/html/winmain.html
http://msdn.microsoft.com/en-us/library/ms633559(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://www.nova.pc.pl/software.htm
http://rudy.mif.pg.gda.pl/~bogdro/linux/tsr_tut_linux_en.html
http://www.ctyme.com/rbrown.htm


18. WNDCLASS Structure.
http://msdn.microsoft.com/en-us/library/ms633576(v=vs.85).aspx [27 July 2013].

19. CreateWindowEx Function.
http://msdn.microsoft.com/en-us/library/ms632680(v=vs.85).aspx [27 July 2013].

20. ShowWindow Function. 
http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx [27 July 2013].

21. Creating a Message Loop.
http://msdn.microsoft.com/en-us/library/ms644928(v=vs.85).aspx#creating_loop 
[27 July 2013].

22. DispatchMessage Function.
http://msdn.microsoft.com/en-us/library/ms644934(v=vs.85).aspx [27 July 2013].

23. TranslateMessage Function.
http://msdn.microsoft.com/en-us/library/ms644955(v=vs.85).aspx [27 July 2013].

24. RegisterHotKey Function.
http://msdn.microsoft.com/en-us/library/ms646309(v=vs.85).aspx [27 July 2013].

25. MapVirtualKeyEx Function.
http://msdn.microsoft.com/en-us/library/ms646307(v=vs.85).aspx [27 July 2013].

26. UnregisterHotKey Function.
http://msdn.microsoft.com/en-us/library/ms646327(v=vs.85).aspx [27 July 2013].

27. WM_HOTKEY Message.
http://msdn.microsoft.com/en-us/library/ms646279(v=vs.85).aspx [27 July 2013].

28. MSG Structure. 
http://msdn.microsoft.com/en-us/library/ms644958(v=vs.85).aspx [27 July 2013].

29. GetMessage Function.
http://msdn.microsoft.com/en-us/library/ms644936(v=vs.85).aspx [27 July 2013].

30. keybd_event Function.
http://msdn.microsoft.com/en-us/library/ms646304(v=vs.85).aspx [27 July 2013].

31. SetKeyboardState Function.
http://msdn.microsoft.com/en-us/library/ms646314(v=vs.85).aspx [27 July 2013].

32. GetKeyState Function.
http://msdn.microsoft.com/en-us/library/ms646301(v=vs.85).aspx [27 July 2013].

33. mouse_event Function.
http://msdn.microsoft.com/en-us/library/ms646260(v=vs.85).aspx [27 July 2013].

34. SendInput Function.
http://msdn.microsoft.com/en-us/library/ms646310(v=vs.85).aspx [27 July 2013].

35. Introduction to Windows Service Applications.
http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx [27 July 2013]

36. Services.
http://msdn.microsoft.com/en-us/library/ms685141.aspx [27 July 2013].

37. How To Create a User-Defined Service.
http://support.microsoft.com/default.aspx?scid=kb;en-us;137890 [27 July 2013].

38. Nowacki ZA. File Duplicator for the Microsoft Windows Operating System.  Elektryka 
2011; 1108 (123): 39-50.

39. File Duplicator: An Example of Windows Services by Zbigniew A. Nowacki.

http://support.microsoft.com/default.aspx?scid=kb;en-us;137890
http://msdn.microsoft.com/en-us/library/ms685141.aspx
http://msdn.microsoft.com/en-us/library/d56de412(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms646310(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646260(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646301(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646314(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646304(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644936(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644958(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646279(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646327(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646307(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms646309(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644955(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644934(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644928(v=vs.85).aspx#creating_loop
http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms632680(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms633576(v=vs.85).aspx


http://www.nova.pc.pl/filedupl.pdf [27 July 2013].

40. spawn functions.
http://www.users.pjwstk.edu.pl/~jms/qnx/help/watcom/clibref/src/spawn.html 
[27 July 2013].

41. GetSystemDirectory Function.
http://msdn.microsoft.com/en-us/library/ms724373(v=vs.85).aspx [27 July 2013].

42. GetShortPathName Function.
http://msdn.microsoft.com/en-us/library/aa364989(v=vs.85).aspx [27 July 2013].

43. PostQuitMessage Function.
http://msdn.microsoft.com/en-us/library/ms644945(v=vs.85).aspx [27 July 2013].

44. exit Function.
http://msdn.microsoft.com/en-us/library/k9dcesdd(v=vs.80).aspx [27 July 2013].

45. MessageBox Function.
http://msdn.microsoft.com/en-us/library/ms645505(v=vs.85).aspx [27 July 2013].

46. printf. 
http://www.cplusplus.com/reference/clibrary/cstdio/printf/ [27 July 2013].

47. Open Watcom C++. Class Library Reference.
   http://www.openwatcom.org/ftp/manuals/current/cpplib.pdf   [27 July 2013].

48. vsprintf.
http://www.cplusplus.com/reference/clibrary/cstdio/vsprintf/ [27 July 2013].

49. Watcom C Library Reference. Volume 1.
ftp://ftp.heanet.ie/disk1/openwatcom/manuals/1.5/clib.pdf [27 July 2013].

50. SetTimer Function.
http://msdn.microsoft.com/en-us/library/ms644906(v=vs.85).aspx [27 July 2013].

51. KillTimer Function.
http://msdn.microsoft.com/en-us/library/ms644903(v=vs.85).aspx [27 July 2013].

52. GetPixel Function.
http://msdn.microsoft.com/en-us/library/dd144909(v=vs.85).aspx [27 July 2013].

53. GetCursorPos Function.
http://msdn.microsoft.com/en-us/library/ms648390(v=vs.85).aspx [27 July 2013].

54. CreateDC Function.
http://msdn.microsoft.com/en-us/library/dd183490(v=vs.85).aspx [27 July 2013].

55. DeleteDC Function.
http://msdn.microsoft.com/en-us/library/dd183533(v=vs.85).aspx [27 July 2013].

56. Sleep Function.
http://msdn.microsoft.com/en-us/library/ms686298(v=vs.85).aspx [27 July 2013].

57. Multiple Threads.
http://msdn.microsoft.com/en-us/library/ms684254(v=vs.85).aspx [27 July 2013].

58. Concurrent Processes: Basic Issues. 
http://cnx.org/content/m12312/latest/ [27 July 2013].

59. Szurgot R. Parallel Programming in Windows. Master’s thesis supervised by Z. A. 
Nowacki, Lodz University of Technology: 2009.

60. CreateSemaphore Function.
http://msdn.microsoft.com/en-us/library/ms682438(v=vs.85).aspx [27 July 2013].

http://msdn.microsoft.com/en-us/library/ms682438(v=vs.85).aspx
http://cnx.org/content/m12312/latest/
http://msdn.microsoft.com/en-us/library/ms684254(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms686298(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd183533(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd183490(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms648390(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd144909(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644903(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644906(v=vs.85).aspx
ftp://ftp.heanet.ie/disk1/openwatcom/manuals/1.5/clib.pdf
http://www.cplusplus.com/reference/clibrary/cstdio/vsprintf/
http://www.openwatcom.org/ftp/manuals/current/cpplib.pdf
http://www.cplusplus.com/reference/clibrary/cstdio/printf/
http://msdn.microsoft.com/en-us/library/ms645505(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/k9dcesdd(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms644945(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa364989(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724373(v=vs.85).aspx
http://www.users.pjwstk.edu.pl/~jms/qnx/help/watcom/clibref/src/spawn.html
http://www.nova.pc.pl/filedupl.pdf


61. WaitForSingleObject Function.
http://msdn.microsoft.com/en-us/library/ms687032(v=vs.85).aspx [27 July 2013].

62. ReleaseSemaphore Function.
http://msdn.microsoft.com/en-us/library/ms685071(v=vs.85).aspx [27 July 2013].

63. PeekMessage Function.
http://msdn.microsoft.com/en-us/library/ms644943(v=vs.85).aspx [27 July 2013].

64. Merriam-Webster’s Dictionary of English Usage. Merriam-Webster, Inc: 1994.

65. Recursive Acronym. 
http://catb.org/jargon/html/R/recursive-acronym.html [27 July 2013].

66. Kernighan BW, Ritchie DM. The C Programming Language. Second Edition. Prentice
Hall: New Jersey, 1988.

67. Stroustrup B. The C++ Programming Language. Third Edition. Addison Wesley: New
Jersey, 1997.

68. C Language Tutorial.
http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/ [27 July 2013].

http://einstein.drexel.edu/courses/Comp_Phys/General/C_basics/
http://catb.org/jargon/html/R/recursive-acronym.html
http://msdn.microsoft.com/en-us/library/ms644943(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms685071(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms687032(v=vs.85).aspx

	3. The main section of a TSR
	GetKeyState(key) < 0
	GetSystemDirectory(ie,MAX_PATH+1); // get the system disk
	GetShortPathNameA(ie,ie,MAX_PATH+1); // replace long name by short one
	POINT pt; // for cursor position


